Introduction

This application note provides several suggested schemes for using the Block Animator (version BA-1) with the cantilevered signal bridge from BLMA models. The signal bridge includes four 3-light (individual green, yellow and red LEDs) signal heads on one side of the bridge. You will need two BA-1 Block Animators to control the four signal heads since each Block Animator controls two heads. Please note that with this usage of the Block Animator you CANNOT enable approach lighting; you MUST have the APPRL switch in the OFF/OPEN position in order to have proper signal behavior. Signal head wiring is NOT shown in this application note so please refer to the appropriate section in the BA-1 instructions for those details! In the schemes described here the concept of Eastbound (EB) and Westbound (WB) doesn’t apply since the signals are all facing the same direction. However, we retain those labels in order to match the correct photocell inputs and signal outputs from the BA-1.

Double track converging into a single track

Figure 1 below shows a double track section converging into a single track. To have more prototypical signal behavior you will interlock the signals with the position of the turnout. As such one head or the other will display red since the turnout cannot be aligned for both routes simultaneously! Figure 1 below shows how you can use the auxiliary contacts on a switch machine/motor to accomplish this. You will need one set of “SPDT” (single pole double throw) contacts. The W1 photocell for the upper track will be disconnected from the Block Animator when the turnout is thrown for the lower track (the terminal labeled COM makes contact with the terminal labeled N.C. (Normally Closed)). Similarly, the E1 photocell for the lower track will be disconnected from the Block Animator when the turnout is thrown for the upper track (the terminal labeled COM makes contact with the terminal labeled N.O. (Normally Open)). When a photocell is disconnected the Block Animator will be tricked into thinking the photocell is covered from light (because the open circuit looks like an infinitely high resistance to it) and will thus display red on the signal. When the photocell is reconnected, and if uncovered, the Block Animator will delay, turn the signal yellow, delay and finally turn the signal green. The distance between the turnout and photocells E1 and W1 is your choice. However, keep in mind the 35 second timeout described in the BA-1 instructions! You may elect to use the upper heads or the lower heads on the BLMA bridge for this application. If you have another track arrangement like this further down the track you could use the upper heads for this nearby track and the lower heads for the farther away track. Simply replicate the wiring in Figure 1 for each location.
Figure 1

Single track diverging into double track

Figure 2 below shows a single track diverging into double track. Once again you will interlock the signals with the position of the turnout. As such one head or the other will display red since the turnout cannot be aligned for both routes simultaneously! Figure 2 below shows how you can use the auxiliary contacts on a switch machine/motor to accomplish this. You will need one set of “SPDT” (single pole double throw) contacts. The W1 photocell for the diverging route will be disconnected from the Block Animator when the turnout is thrown for the main route (the terminal labeled COM makes contact with the terminal labeled N.C. (Normally Closed)). Similarly, the E1 photocell for the main route will be disconnected from the Block Animator when the turnout is thrown for the diverging route (the terminal labeled COM makes contact with the terminal labeled N.O. (Normally Open)). When a photocell is disconnected the Block Animator will be tricked into thinking the photocell is covered from light (because the open circuit looks like an infinitely high resistance to it) and will thus display red on the signal. When the photocell is reconnected, and if uncovered, the Block Animator will delay, turn the signal yellow, delay and finally turn the signal green. The distance between the turnout and photocells E1 and W1 is your choice. However, keep in mind the 35 second timeout described in the BA-1 instructions! You may elect to use the left or right set of signal heads on the BLMA bridge. If you have another track arrangement like this nearby you could use the other set of heads and simply replicate the wiring in Figure 2 for that location.
Double crossover
Perhaps the best location for the BLMA bridge is around a double crossover. Such a track arrangement slightly complicates the photocell wiring but the end result will be worth the effort! Figure 3 below shows a double crossover with photocell placement and signal and photocell labeling. The numbers in parenthesis indicate which BA-1 (i.e. #1 or #2) is associated with that signal head or photocell. The four turnouts that comprise the double crossover are labeled A, B, C and D. There are primarily two ways in which you’re probably operating your double crossover. The first way is using a single “control mechanism” to either throw all turnouts to their straight route or all turnouts to their reversed route. The second way is to have one “control mechanism” for the pair of turnouts A and D and a separate “control mechanism” for the pair of turnouts B and C. Each of these cases will be described later.
Double crossover (single control mechanism)

If you have a single control mechanism to throw all turnouts at once then the photocell wiring is a little simpler. Figure 4 below shows the photocell wiring for the first BA-1 while Figure 5 shows the photocell wiring for the second BA-1. For each diagram only the signals and photocells associated with that BA-1 are shown.
Double crossover (two control mechanism)

If you have two control mechanisms to throw the turnouts (A and D together, B and C together) then the photocell wiring gets a little more complicated. In this scenario it is possible to have turnout B straight while turnout D is reversed (or A straight and C reversed). As such it is necessary to force BOTH signal heads EB2 and WB2 to red (or EB1 and WB1 with respect to turnouts A and C) since neither route is properly aligned! Figure 6 below shows the photocell wiring for the first BA-1 while Figure 7 shows the photocell wiring for the second BA-1. For each diagram only the signals and photocells associated with that BA-1 are shown.

![Diagram of photocell wiring for the first BA-1]

Figure 6
Technical Support
If you need further assistance with this application please do not hesitate to contact us by phone, mail and email; our contact information can be found on the top of Page 1.